Use of Seismic Hazard Information in Water and Wastewater System Analysis

ATC/USGS Seismic Hazards User-Needs Workshop September 21-22, 2015

Don Ballantyne PE Ballantyne Consulting LLC

Introduction

- Earthquake engineer focusing on seismic performance of water and wastewater systems
- First system analysis Seattle Water 1987, USGS Funded
- Evaluated over 75 systems since
- Objective estimate the likely performance of systems when subjected to an earthquake
- Identify needs

Source: Kennedy/Jenks/Chilton (1990b)

Figure 4-1 Modified Mercalli Intensity map for the southern half of Seattle, Wash., for a magnitude 7.5 earthquake

Overview – Modeling Issues

- Seismicity
 - Scenarios
 - ShakeMap, return periods
- Geotechnical Hazards/ Permanent Ground Deformation
 - Surface fault rupture
 - Liquefaction/lateral spread, areal extent
 - Settlement
 - Landslide
 - Lurching

Scenarios

- Used scenarios rather than probabilistic ground motions to avoid over estimating damage
- Select scenarios approximating 500 and 2,500 year return
- PGA facilities using HAZUS
- PGV pipelines using ALA
- ShakeMap handy source
- Return Periods?

Designer Faults - Sliding, Different Strand, Return Periods?

Fault Model - Shannon and Wilson 2013

- Return periods are critical to assess economic risk
- SWIF 2,700 year return
 - Any where along fault?
- Seattle Fault
 - 1,000 years region
 - 5,000 years northern strand
- Tacoma Fault
 - 4,500 year return
 - Anywhere
 - Specific splay
 - Difference between splays

Cascadia M8.5 versus 9.0

- Return period for region similar?
- Ground motions similar?
- Duration slightly shorter
- Is there a significant difference other than the area impacted??

PERCEIVED	Notfelt	Weak	Light	Moderate	Strong	Very strong	Severe	Violent	Extreme
POTENTIAL DAMAGE	none	none	none	Very ight	Light	Moderate	Moderate/Heavy	Heavy	Very Heavy
PEAK ACC.(%g)	<.17	.17-1.4	1.4-3.9	3.9-9.2	9.2-18	18-34	34-65	65-124	>124
PEAK VEL.(cm/s)	<0.1	0.1-1.1	1.1-3.4	3.4-8.1	8.1-16	16-31	31-60	60-116	>116
INSTRUMENTAL INTENSITY	1	IFIII	IV	V	VI	VII	VIII	IX	X+

Deep Intraplate/Benioff

- Return period by location?
- Return period by magnitude?

Surface Fault Rupture PGD

Fault Model - Shannon and Wilson 2013

- Future clarity of strand activity
- Better understanding of PGD from reverse (Seattle, Tacoma) or reverse/strike slip (SWIF)?

SEATTLE AREA LIQUEFACTION AREAS

Liquefaction is primary driver for water system vulnerability

Low to moderate

^I Consistency across maps

Areal extent

Liquefaction

- Dramatic impact on results
- Mapped liquefaction area
- Different than probability of liquefaction (susceptibility, PGA, groundwater)
- Estimate of percent that will undergo lateral spreading
- HAZUS included estimate (20% maximum)
- Minimal data (observation in Christchurch)
- Settlement
 - Rate of change over distance
 - Surface cracking

Permanent Ground Deformation

- Required to estimate pipeline damage
- Function of liquefaction susceptibility, PGA, duration, and soil parameters
- Liquefaction PGD developed by DOGAMI for Oregon Resilience Plan
- Otherwise limited availability

Floating Sewers

 Are there specific characteristics of liquefiable deposits that allow flotation, and that can be mapped?

Tohoku, Japan 2011

Landslide Mapping

- The availability and quality of landslide mapping lags that of liquefaction.
- The assessment techniques used are often crude (slope, soil type) and end up in overestimation

Lurching

- Vague term addressing PGD in non-liquefiable formations that can result in movement of large blocks of soil?
 - Northridge Balboa, sensitive clays
 - Anchorage sensitive clays
 - Oakland Hills weak soil layer
- Difficult/expensive to map not exposed
- Can be as damaging as other forms of PGD

QUESTIONS ?

Don Ballantyne PE Ballantyne Consulting LLC dbballan@comcast.net